Algorithmic advances in droplet computations.
Computing fluid interactions in a turbulent background flow

Lou Rossi & Claudio Torres
Dept. of Mathematical Sciences

Department of Mathematical Sciences
University of Delaware

Cloud Physics Workshop Aug 2011
Outline

1. The cloud/droplet model
2. Krylov space methods
3. Droplet model investigations
4. Conclusions and future work
Stokes flow around spheres in a turbulent background flow.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow (u).
- Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
 - Spheres induce a Stokes flow (u).
 - Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow (U).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow (u).
- Spheres interact with each other.
Stokes flow around spheres in a turbulent background flow.

Features

- Spectrally resolved driven turbulent flow \((U)\).
- Spheres are passive agents in the turbulent flow.
- Spheres induce a Stokes flow \((u)\).
- Spheres interact with each other.
Flow field induced by k^{th} particle in isolation (free stream velocity V_p).

$$u_s(\vec{r}^{(k)}; a^{(k)}, V_p^{(k)}) = \frac{3}{4} \left[\frac{a^{(k)}}{r^{(k)}} - \left(\frac{a^{(k)}}{r^{(k)}} \right)^3 \right] \frac{\vec{r}^{(k)}}{(r^{(k)})^2} (V_p^{(k)} \cdot \vec{r}^{(k)}) +$$

$$\left[\frac{3 a^{(k)}}{4 r^{(k)}} + \frac{1}{4} \left(\frac{a^{(k)}}{r^{(k)}} \right)^3 \right] V_p^{(k)}$$
The mathematical model.

Interacting particles...

\[u^{(k)} = \sum_{m=1, m\neq k}^{N_p} u_s \left(d^{(mk)}; a^{(m)}, V^{(m)} - U(Y^{(m)}, t) - u^{(m)} \right), \]

\[k = 1 \ldots N_p \]
The mathematical model.

Interacting particles...

\[u^{(k)} = \sum_{m=1, m \neq k}^{N_p} u_s \left(d^{(mk)}; a^{(m)}, V^{(m)} - U(Y^{(m)}, t) - U^{(m)} \right), \]

\[k = 1 \ldots N_p \]

\[u(x, t) = \sum_{k=1}^{N_p} u_s(r^{(k)}; a^{(k)}, V^{(k)} - U(Y^{(k)}, t) - U^{(k)}) \]
The evolution of the algorithm

- Precomputation of A
- Analysis of methods
- Preconditioners...
 ...and more preconditioners...
- Cauchy integral equation
- GMRes with recycling

Simulation efficiency

Time

GMRes

Block Jacobi

<Improved droplet models>
Generalized Minimal Residual

Solving $Ax = b$ for our cloud system.

- Droplet interactions: $1/r$.
- Interactions are cut off when $r > 50a$.
Generalized Minimal Residual

Solving $Ax = b$ for our cloud system.

- Droplet interactions: $1/r$.
- Interactions are cut off when $r > 50a$.

Krylov space:

$$K_m(A, x_0) = \text{span} \left\{ x_0, Ax_0, A^2 x_0, \ldots, A^{m-1} x_0 \right\}$$

Big idea: We solve the system efficiently by finding solutions in K_m, $m < \text{dim}(A)$.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for \(K_m \) and \ldots
- GMRes minimizes \(\| b - Ax_m \|_2 = \| r \| \) over the space of all possible vectors \(x_m = x_0 + Vmy \).
- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and . . .
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_m y$.

- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and \ldots
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_my$.
- Like most good iterative methods, convergence is geometric under many circumstances.

\[
\|r_m\| \leq \left(1 - \frac{\lambda_{\min}(A + A^T)}{2\lambda_{\max}(A + A^T)}\right)^{m/2} \|r_0\|
\]

- Unfortunately, our droplet system is not positive definite.
Generalized Minimal Residual

General features of GMRes.

- GMRes constructs an orthonormal basis for K_m and \ldots
- GMRes minimizes $\|b - Ax_m\|_2 = \|r\|$ over the space of all possible vectors $x_m = x_0 + V_m y$.
- Like most good iterative methods, convergence is geometric under many circumstances.
- Unfortunately, our droplet system is not positive definite.
Convergence of GMRes for non-PD matrices.

Sad truth: Our A is not positive definite.
Convergence of GMRes for non-PD matrices.

Sad truth: Our A is not positive definite.

Happy result: We can still estimate a bound on the convergence rate.

$$\rho = \frac{M - m + 2\epsilon}{M + m + 2\sqrt{M m} + \epsilon^2}$$
Convergence of GMRes for non-PD matrices.

Sad truth: Our A is not positive definite.

Happy result: We can still estimate a bound on the convergence rate.

\[\rho = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} + \frac{2\varepsilon}{(\sqrt{M} + \sqrt{m})^2} + O(\varepsilon^2), \quad \kappa = \frac{M}{m} \]
Can we solve the droplet system under general circumstances?
Can we solve the droplet system under general circumstances?
Can we solve the droplet system under general circumstances?
Can we solve the droplet system under general circumstances?

The cloud/droplet model
Krylov space methods
Droplet model investigations
Conclusions and future work
Choose an appropriate M to solve...

$$M^{-1}Ax = M^{-1}b$$

Ideal properties for M:

- $M^{-1}A$ has good convergence properties.
- $M^{-1}y = c$ can be solved quickly and accurately (unlike $Ax = b$).
Preconditioning

Choose an appropriate M to solve...

\[M^{-1} Ax = M^{-1} b \]

Ideal properties for M:
- $M^{-1} A$ has good convergence properties.
- $M^{-1} y = c$ can be solved quickly and accurately (unlike $Ax = b$).

Schwarz Preconditioner

\[Ax = (A_1 + A_2)x = b \]
\[A_1 x^{m+1} = b - A_2 x^m \]
The current physical model

Droplets interact via Stokes flow.

\[\psi = \frac{1}{4} \left(2r^2 - 3r + \frac{1}{r} \right) \sin^2 \theta \]

- Valid for \(R = 0 \).
- Satisfies correct boundary conditions at sphere surface and in free stream.
- Stokes flow permits superposition.
- Problems: No \(R \) dependence. Slow decay. No wake. What is the convergent limit?
A proof-of-concept Oseen solution

\[\psi = \frac{1}{2} r^2 \sin^2 \theta - \frac{3}{2R} (1 + \cos \theta) \left(1 - e^{-\frac{1}{2} rR(1 - \cos \theta)} \right) \]

- Valid as an outer approximation for small \(R \) when \(r = O(1/R) \).
- Satisfies correct boundary conditions in free stream.
- Problems: Does not satisfy BC’s on the sphere. Does not permit superposition of solutions.
What is the residual, anyway?

\[R = 10^{-2} \]
What is the residual, anyway?

\[R = 10^{-1} \]
What is the residual, anyway?

\[R = 10^0 \]
What is the residual, anyway?

\[R = 5 \]
A new algorithm...

If the free stream were the same for all particles, we might use the Oseen solution.
A new algorithm...

If the free stream were the same for all particles, we might use the Oseen solution.

\[\vec{V}_n = \vec{V}_i + \epsilon_{i,5} q_{i,5} \]

\[\vec{V}_{n+3} = \vec{V}_i + \epsilon_{i,2} q_{i,2} \]

\[\vec{V}_j = \vec{V}_i + \epsilon_{i,1} q_{i,2} \]

\[\vec{V}_{n+1} = \vec{V}_i + \epsilon_{i,4} q_{i,4} \]

\[\vec{V}_{n+2} = \vec{V}_i + \epsilon_{i,3} q_{i,3} \]
A new algorithm...

If the free stream were the same for all particles, we might use the Oseen solution.
A new algorithm...

If the free stream were the same for all particles, we might use the Oseen solution.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We are expecting a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include R dependence.

GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We are expecting a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include R dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We are expecting a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include R dependence.

GMRes has improved the efficiency of our simulation.

Our analysis suggests that our solver is robust.

We are expecting a factor of two improvement using precomputation.

We will focus our efforts on improving the interacting droplet approximation to include R dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We are expecting a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include R dependence.
Conclusions and future work

- GMRes has improved the efficiency of our simulation.
- Our analysis suggests that our solver is robust.
- We are expecting a factor of two improvement using precomputation.
- We will focus our efforts on improving the interacting droplet approximation to include R dependence.
Thanks