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Introduction

Smoothed particle hydrodynamics (SPH) is a numerical method for obtaining approx-
imate solutions of the equations of the fluid dynamics by replacing the fluid with a
set of particles. From a mathematical point of view, these particles are interpolation
points from which the properties of the fluid are interpolated by moving basis functions.
The mesh-free formulation of the method and its inherent stability make it popular for
problems that have complex geometry or large deformations.

Essential formulation of SPH

SPH was developed to solve fluid dynamic problems in forms of a system of partial
differential equations (PDEs). In the system, the rates of change of physical quantities
depend on the spatial derivative of physical quantities. SPH approximates these deriva-
tives using the information of a finite number of moving particles, by interpolating on
these particles with the smoothing kernel function.
SPH interpolation of a quantity f, is based on integral interpolant

fI(r) =

∫

f (r′)W (r− r
′, h) dr′

where the function W is the smoothing kernel and dr′ is the volume element. Kernel
functions are well chosen, normalized functions which have compact support, and tend
to the delta function as the length scale h tends to zero. Three key parameters of kernel
functions are shape, width h and overlap factor β.

We approximate the integral and the first derivative of f as a summation over the mass
element

fS(r) =
∑

j

fjW (r− rj, h)
mj

ρj
∇fS(r) =

∑

j

fj∇W (r− rj, h)
mj

ρj

Since W falls rapidly with distance, this summation is over only neighboring particles
in a local domain.

Governing Equations of Fluid dynamics and SPH formulation

The governing equations for dynamic fluid flows can be written as a set of partial differ-
ential equations in lagrangian description.
Continuity equation:

dρ

dt
= −ρ∇ · v

Momentum equation in absence of external force:

dv

dt
= −

1

ρ
∇P +

1

ρ
∇ · (µ∇v)

Using the kernel estimate and particle approximation, one gets,

dρi

dt
=
∑

j

mjvij∇iW (rij, h)

where vij = vi − vj and rij = ri − rj.
For the momentum equation, in order to conserve momentum, the expression is modified
for the term ∇P

ρ

∇P

ρ
= ∇

(

P

ρ

)

+
P

ρ2
∇ρ

By applying the SPH derivative formulation to the right hand side,

dvi

dt
= −

∑

j

mj

(

Pi

ρ2i
+
Pj

ρ2j
+ Πij

)

∇iW (rij, h)

where Πij is the viscous diffusion term. This comes from a hybrid expression combining
a SPH first derivative with a finite difference approximation of a first derivative,

Πij =
µi + µj

ρiρj

vij · rij

r
2
ij + 0.01h2

Boundary treatment

Special technique are used to capture real physical boundary conditions. Ghost particles
are created outside the fluid domain by reflecting fluid particles across the boundary.
They have the same density, mass and pressure as corresponding fluid particles, but
with the perpendicular component of the velocity having the opposite sign to achieve
no-penetration condition, and the tangential component having the opposite sign to
achieve no-slip condition.
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Parallel implementation

Since SPH is a system of locally interacting particles, it is a perfect candidate for par-
allelization. Based on particle decomposition, a group of particles are assigned to a
particular processor during the simulation, irrespective of its spatial location.

Simulation of the Couette flow

The Couette flow is a fluid flow between two infinite plates located at y = −L and
y = L. The flow is generated after the upper plate moves at constant velocity U parallel
to the x-axis. The series solution for the time-dependent behavior is known. In the
figure, we compare the SPH solution and the exact series solution.

The accuracy of SPH is related to many factors, such as kernel function shape,
time integration, boundary condition treatment, number of particles, and overlap
factor, etc. The figure below shows how the error depends on number of particles
N and overlap factor β. It shows that in our case SPHmethod has second order accuracy.

Conclusion and future work

The ghost particles give good results for flows with simple geometries. It is not clear
how the ghost particles should be placed when the boundary has complex geometry.
An efficient and general technique needs to be developed. On the other hand, in SPH,
the dynamics of a material is governed by the local influence of neighboring particles.
Therefore, the efficient querying and processing of particle neighbors is crucial for
the performance of the simulation. Our naive parallel implementation works well for
low core counts, but not as well for high core counts. Future work will also focus on
improvements to our parallel algorithm.
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